SparseBeads data: benchmarking sparsity-regularized computed tomography
نویسندگان
چکیده
منابع مشابه
How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography
We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-...
متن کاملRegularized Computed Tomography using Complex Wavelets
Reconstructing low-dose computed tomography (CT) images is an unstable inverse problem, due to the presence of noise. To address this problem, we propose a new regularized reconstruction method that combines features from the Filtered Back-Projection (FBP) algorithm and regularization theory. The filtering part of FBP comprises Fourier-domain inversion followed by noise suppression based on thr...
متن کاملTemporal sparsity exploiting nonlocal regularization for 4D computed tomography reconstruction
X-ray imaging applications in medical and material sciences are frequently limited by the number of tomographic projections collected. The inversion of the limited projection data is an ill-posed problem and needs regularization. Traditional spatial regularization is not well adapted to the dynamic nature of time-lapse tomography since it discards the redundancy of the temporal information. In ...
متن کاملShearlet-based regularized reconstruction in region-of-interest computed tomography
Region of interest (ROI) tomography has gained increasing attention in recent years due to its potential to reducing radiation exposure and shortening the scanning time. However, tomographic reconstruction from ROI-focused illumination involves truncated projection data and typically results in higher numerical instability even when the reconstruction problem has unique solution. To address thi...
متن کاملSpeed and Sparsity of Regularized Boosting
Boosting algorithms with l1-regularization are of interest because l1 regularization leads to sparser composite classifiers. Moreover, Rosset et al. have shown that for separable data, standard lpregularized loss minimization results in a margin maximizing classifier in the limit as regularization is relaxed. For the case p = 1, we extend these results by obtaining explicit convergence bounds o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Measurement Science and Technology
سال: 2017
ISSN: 0957-0233,1361-6501
DOI: 10.1088/1361-6501/aa8c29